In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication.
نویسندگان
چکیده
African swine fever virus (ASFV) is the etiological agent of a highly-contagious and fatal disease of domestic pigs, leading to serious socio-economic impact in affected countries. To date, neither a vaccine nor a selective anti-viral drug are available for prevention or treatment of African swine fever (ASF), emphasizing the need for more detailed studies at the role of ASFV proteins involved in viral DNA replication and transcription. Notably, ASFV encodes for a functional type II topoisomerase (ASFV-Topo II) and we recently showed that several fluoroquinolones (bacterial DNA topoisomerase inhibitors) fully abrogate ASFV replication in vitro. Here, we report that ASFV-Topo II gene is actively transcribed throughout infection, with transcripts being detected as early as 2 hpi and reaching a maximum peak concentration around 16 hpi, when viral DNA synthesis, transcription and translation are more active. siRNA knockdown experiments showed that ASFV-Topo II plays a critical role in viral DNA replication and gene expression, with transfected cells presenting lower viral transcripts (up to 89% decrease) and reduced cytopathic effect (-66%) when compared to the control group. Further, a significant decrease in the number of both infected cells (75.5%) and viral factories per cell and in virus yields (up to 99.7%, 2.5 log) was found only in cells transfected with siRNA targeting ASFV-Topo II. We also demonstrate that a short exposure to enrofloxacin during the late phase of infection (from 15 to 1 hpi) induces fragmentation of viral genomes, whereas no viral genomes were detected when enrofloxacin was added from the early phase of infection (from 2 to 16 hpi), suggesting that fluoroquinolones are ASFV-Topo II poisons. Altogether, our results demonstrate that ASFV-Topo II enzyme has an essential role during viral genome replication and transcription, emphasizing the idea that this enzyme can be a potential target for drug and vaccine development against ASF.
منابع مشابه
In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae.
We have screened for in vitro inhibition of viral replication with extracts from the following marine microalgae: Porphyridium cruentum, Phaeodactylum tricornutum, Tetraselmis suecica, Chlorella autotrophica, Dunaliella tertiolecta, Dunaliella bardawil, Isochrysis galbana, Isochrysis galbana var Tiso, Ellipsoidon sp. and Tetraselmis tetrathele. We have used as viral models two enveloped viruses...
متن کاملThe ubiquitin-proteasome system is required for African swine fever replication
Several viruses manipulate the ubiquitin-proteasome system (UPS) to initiate a productive infection. Determined viral proteins are able to change the host's ubiquitin machinery and some viruses even encode their own ubiquitinating or deubiquitinating enzymes. African swine fever virus (ASFV) encodes a gene homologous to the E2 ubiquitin conjugating (UBC) enzyme. The viral ubiquitin-conjugating ...
متن کاملInhibition by rifampin of African swine fever virus replication in tissue culture.
Vaccinia virus and African swine fever virus are deoxyribonucleic acid viruses of cytoplasmic origin. The fact that rifampin inhibits the replication of the former virus led to an investigation of its effect on African swine fever virus. The virus used was cytopathogenic to a PK-15 cell line, hemadsorbing in pig leukocyte cultures and lethal to pigs. Rifampin clearly inhibited the multiplicatio...
متن کاملVimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II.
African swine fever virus (ASFV) infection leads to rearrangement of vimentin into a cage surrounding virus factories. Vimentin rearrangement in cells generally involves phosphorylation of N-terminal domains of vimentin by cellular kinases to facilitate disassembly and transport of vimentin filaments on microtubules. Here, we demonstrate that the first stage in vimentin rearrangement during ASF...
متن کاملInvolvement of the reparative DNA polymerase Pol X of African swine fever virus in the maintenance of viral genome stability in vivo.
The function of the African swine fever virus (ASFV) reparative DNA polymerase, Pol X, was investigated in the context of virus infection. Pol X is a late structural protein that localizes at cytoplasmic viral factories during DNA replication. Using an ASFV deletion mutant lacking the Pol X gene, we have shown that Pol X is not required for virus growth in Vero cells or swine macrophages under ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Antiviral research
دوره 134 شماره
صفحات -
تاریخ انتشار 2016